Data mining is looking at relationships and correlations to aims to predict outcomes. This is not a typical problem that you would think as being something that can be work on with data mining, but there are some opportunities using a principle component analysis. Data mining can reveal if there is a relationship between preventable nursing turnover and nurse salaries. Examples of unpreventable nursing turnover is retirement, relocation, death, and involuntary termination. Other variables to look at related to preventable nursing turn over would be leapfrog rating, CMS Stars, Magnet status, mandated patient ratios, workplace violence incidents, employee injuries, and union hospitals. The ability to data mine these items in comparison preventable nursing turnover will help guide what is most important to nursing to then have targeted interventions to decrease this turnover and keep nurses in the profession. One study did find a correlation with workplace violence and turnover in two large teaching hospitals (Yeh et al., 2020).
Once it is identified what seems to be the most important components that keep nurses in their roles will allow for focusing on those things to improve and then market that when recruiting nurses into the organization. With the shortage it is important to retain the nurses that you have and creatively market new ones in. This includes taking more new graduate nurses than historically taken.
Yeh, T.-F., Chang, Y.-C., Feng, W.-H., Sclerosis, M., & Yang, C.-C. (2020). Effect of Workplace Violence on Turnover Intention: The Mediating Roles of Job Control, Psychological Demands, and Social Support. Inquiry : A Journal of Medical Care Organization, Provision and Financing, 57, 46958020969313. https://doi-org.lopes.idm.oclc.org/10.1177/0046958020969313
Struggling with online classes or exams? Get expert help to ace your coursework, assignments, and tests stress-free!